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E F F E C T  OF A T H I N  C O A T I N G  ON T H E  P R E S S U R E  D I S T R I B U T I O N  IN C O N T A C T  

P R O B L E M S  I N V O L V I N G  F R I C T I O N A L  H E A T  G E N E R A T I O N  

R. D.  K u l ' e h i t s k i i - Z h i g a i l o  a n d  A.  A .  E v t u s h e n k o  UDC 539.3 

A thermoelastic problem for a layer of finite thickness one of whose surfaces is subjected to the 
action of normal pressure and heat flux is studied. A relationship among vertical displacements 
of the surface of the layer, the surface temperature, and the disturbing factors is obtained. 
Corresponding relations are obtained for a layer of small thickness. An azisymmetric contact 
problem for a rigid heat-conducting base whose surface is coated with a thin elastic layer is 
studied as an example. 

In t roduc t ion .  Analysis of the stress state of layered media under the joint action of mechanical and 
temperature loads is very important from the viewpoint of various practical applications, such as protective 
spraying, layered composite media, thin films, etc. In the present paper, we study the effect of frictional loading 
on the stress state of a piecewise-homogeneous half-space. The corresponding thermoelastic boundary-value 
problem is solved using a double integral Fourier transform over spatial variables. 

Axisymmetric contact problems for a spherical indenter that interacts with a homogeneous elastic 
half-space were studied in [1-5]. No solutions for a piecewise-homogeneous half-space have been obtained. We 
note that isothermal (in the absence of heating) contact problems for a layer and a half-space were studied 
in [6-81 . 

1. S o l u t i o n  o f  a T h e r m o e l a s t i c  Boundary-Value  P r o b l e m  for a P iecewise -Homogeneous  
Half-Space. A piecewise-homogeneous half-space consisting of a layer of thickness h resting on the surface 
of an elastic half-space is considered. This mechanical system is referred to a rectangular coordinate system 
x, y, z (Fig. 1). The surface of the layer z = h is exposed to normal pressure p and heat flux q in a finite 
region ft. Outside this region, the surface of the layer is not loaded and is heat insulated. The mechanical and 
thermal contact of the layer and the half-space is ideal. 

Investigation of the problem reduces to solution of the Duhamel-Neumann equations [9] 

(1 - 2vj)V2u (j) + Vdivu (j) = 2aj(1 + vj)aVT (j), j = 1, 2. (1.1) 

Here uU) = (au~ 1), au U), au~ j)) is the vector of elastic displacement, T U ) i s  the temperature, V = 
(0/0~,0/0~,0/0~), vj and a i  are the Poisson ratio and the linear thermal expansion coefficient, ~ = x/a, 
q = y[a, ( = z/a, and a is the characteristic linear dimension of the region ft. Here and below, the subscripts 
j = 1 and 2 refer to the layer and the half-space, respectively. 

The temperatures T (1) are obtained by solution of the heat-conduction equations 

V2T (1) = 0, j = 1, 2. (1.2) 

The boundary conditions on the surface of the layer ( = h* = h/a are 

a(1) { -p(~,q), (~,~) E ~, (1.3) 
= o ,  
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a ~  ) = ~ ) = 0 ;  (1.4) 

0TO) / aq(r (r E 12, 
K, 0---~ - =  . 0, (~ , ' 1 ) r  (1.5) 

where Kj (j = 1 and 2) are the thermal conductivities. On the interface between the materials ~" = 0 the 
displacements, stresses, temperatures, and heat fluxes are continuous: 

u~ 1 )=u~  2), u ( 1 ) = u  (2), u~ 1)=u~2); (1.6) 

~) = ~), ~) = ~), 4 2 = g~'; (,.~) 
T (1) = T(2); (1.8) 

OTO) 0T(2) 
K1 - -  = K 2 ~  (1.9) 0r 0r 

A particular solution of the thermoelastic equations (1.1) is of the form [10] 

~,~j) = o~jo~ ' ,,~;) = o~j0'1 ' "~') = o~jor ' (1.10) 

where the thermoelastic potentials ~J (J = 1, 2) are related to the temperatures T(J) by 

02Wj 02~O1 02~9J aj(I  + vj )T (j), = - % ( 1  + v j )T  (j). (1.11) 
062 + ~ = 0r 

The thermoelastic potentials ~j  (j = 1 and 2) generate the stress fields 

02~J a(j) 02~~ 
a~i~ ) = -2/'ti  0,12 , n, = -2/H 0~2 , 

~ = ~,  = ~  =0, 
where/H are the shear coefficients. 

02~j �9 
a~ ) = -2gj 0r 

j = 1, 2, 
(1.12) 

The system of homogenous differential equations (1.1) is equivalent to the equations [11] 

V20 (j) = 0; (1.13) 

V2X (j) = 0; (1.14) 

V2u~j) O0(J) = - d j  -~  , dj = ( 1 - 2 v j )  -1, (1.15) 
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where 

Using condition (1.4), from Eq. (1.14) we have X (i) = 0. The solution of the differential equations 
(1.13) and (1.15) is obtained taking an integral Fourier transform over the dimensionless variables r and r/: 

Here 

0(I)( o~, 8, C) = C, (c~, 8) cosh (sO) + C2((x, 8) cosh [s(h* - C)]; (1.16) 

fi~l)(a, 8, C) = -(1/2)d,C,(a, 8)C cosh (sO) + (1/2)d, C2(a, 8)(h* - C) cosh Is(h" - C)] 

+ DI(a ,8 )  sinh (s() + D2(ct, 8) sinh [s(h* - ()]; (1.17) 

O(2)(a, 8, C) = Cs(a,/3) exp (sC'); (1.18) 

fi~2)((~, 8, C) ---- -(ll2)d2Cs(a, 8)Cexp (sC) + Ds(a, 8) exp (sC). (1.19) 

'1~ 1) = ~ - o o - o o  u~j) exp[- i (a~ + 8T/)ld~ dr/, s = ~ + 82, i = ~/-1. (1.20) 

The stress and strain components in the image space of the integral Fourier transform (1.20) satisfy 
the relations 

= ~  N =~(  N (1.21) 

~ = ; ~ j  (~2 + - + - - ~ - j ;  (1.23) 

i '{,(~2 + 282)~ ")'" (1 + . (1.24) 

The solution of Eqs. (1.1) is a superposition of solutions (1.10), (1.12), (1.16)-(1.19), and (1.21)-(1.24). 
Substituting this solution into boundary conditions (1.3), (1.4), (1.6), and (1.7) yields a system of six algebraic 
equations for the desired functions C/~ and Dk (k = 1, 2, 3) of the form 

[AI(CI, C2, C3, D1, D2, 03) = (0, p/]~l, El, F2, 0, 0). (1.25) 

The expressions for the coefficients of the matrix A and the right sides of the system are not given because 
they are cumbersome. 

Solving system (1.25), from relations (1.10), (1.11), and (1.17) we find 

i -I-dl oq(l Jr" /11) 0~"(I) I fi~l)(r 8, h* ) 2-7 C1(0~,8)+ s 2 OC Ir (1.26) 

Here 

c1((~, ~) = ct(~,, 8 ) /c (~ ,  8); 

C1(a,8 ) ,  _ i5((~, 8)[#*(1 + dl)(1 + d2) cosh (2sinh*) + dl(p* - 1)(d2 +2#* + d2~*) sinh* 
#l 

+ (2~* + 2d2 + 2d1#* + did2(1 + ~.2)) sinh (sinh*) cosh (sinh*)] - 2sFl(c~, 8)[d2(1 + dl) cosh (sinh*) 

+ #* dl ( 1 + d2)[sinh(sinh*) + sinh* cosh (sinh*)] + dl (]~* + d2) sinh* sinh(sinh*)] 
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- -  d " * 2F2(a,/3)[g*d, (1 + 2) smh sinh (sinh*) + (dl#* - d2) sinh (sinh*) + dl(#* + d2) sinh* cosh (sinh*)]; 

C(a,/3) = d1(ju* + 2d2 + did2) cosh 2 (sinh*) + dl/~*(1 + 2g'd1 + g 'did2) sinh 2 (sinh*) 

- dl( # - 1)(d2 + 2#* + d2g*)(sinh*) 2 + (d2 - dl~t ); +2dig*(1 +d l ) (1  +d2)sinh(sinh*)cosh(sinh*) 2 �9 �9 

Fl(~t,/3) = - (-1)Jtrj(1 + t/j) 0(  ~:=0; 

2 

= + C) r z~ = Ul/Z2. 
.i=1 

Solving the heat-conduction boundary-value problem (1.2), (1.5), (1.8), and (1.9), we represent the 
surface temperature in the image space of the integral Fourier transform as 

) ~(1)(c~,/3, h,) _ ~(oq/3)a + - K* ~(c~,/3) sinh (sinh*) 
K 2 ~  ~ cosh (sinh*) + K*sinh (sinh*) (K* = K1/K2). (1.27) 

We note that in the corresponding isothermal problem (q = 0), when/~* --, 0 relation (1.26) leads 
to the well-known relation for normal surface displacements of an elastic layer that is rigidly attached to a 
base [12]. 

For a layer of small thickness (h* << 1), asymptotic analysis of relations (1.26) and (1.27) using the 
method of [13] leads to the formulas 

1 - t / 2  7 7 exp[i(a~ +/3,7)] dad~3 ffp(z,y)exp[-i(ax+/3y)]dzdy v; +/32 ,, 

62a 7 7 exp[i(a~ +/3,7)1 dad~3 ffq(x,y)exp[-@x+/3y)ldxdy _(d2 +.*)(d2- di.*) 
-,~ - ~  a2 +/32 a .1(1 + dl)~ 

(1.28) • h*p(~,,7) + [ (1 -+ ~11)-dl 

a 7 7 exp[/(a~ +/3,7)1 de~d/3 f fq(x,u)exp[-i(ax +/3y)ldxdy 
2~0)(~''7' h*) - 4~r2K2-oo-oo ~ + / 32 fl 

+ "~2 - K* h*q(~,,7) [6i = hi(1 + t/i)/Ki]. (1.29) 

The last two terms on the right side of relation (1.28) and the last term in (1.29) define the effect of 
the thin elastic heat-conducting coating. Letting h* ---, 0, from (1.28) and (1.29) we obtain a solution for the 
half-space. 

The natural question arises: What is the relative thickness of the layer h* for which relations (1.28) 
and (1.29) can be used? It is difficult to give a mathematically rigorously proved answer to this question. 
To obtain approximate estimates, we consider the auxiliary axisymmetric heat-conduction boundary-value 
problem (1.2), (1.5), (1.8), and (1.9) for q(~, ,7) = q = const, where fl is a circle of radius a. The exact solution 
of this problem for ~ = h* is of the form 

sinh (sinh*) ] 
T(U(p,h. ) = ~aq --[ s-xJ,(s)Jo(sp)[1 + (~-~7 - K*) cosh (sinh,) + K.sinh(sinh.)j ds , (1.30) 

0 

and the approximate solution obtained by the method of [13] is given by the formula 

T(I'(p,h*) = ~q.2[/s-IJl(s)Jo(sP) ds+ (~--~7-K*)h*], (1.31) 
0 
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where p = X/r 2 + r/2; J0(" ) and Jl(" ) are Bessel functions of the first kind. 
Solutions (1.30) and (1.31) coincide provided that 

OO 

h /  sinh (sinh*) 
s - ld l (s )d~ cosh(sinh*)+ K*sinh(sinh*) d,  ~ 1, p < 1. (1.32) 

0 
Thus, relation (1.32) is a criterion for determining values of h* for which it is possible to use the approximate 
solution (1.31). Numerical analysis shows that the allowable range of h* depends greatly on the parameter 
K*. Thus, h* < 0.2 for K* = 0.1, h* < 0.05 for K* = 1, and h* < 0.01 for K* = 5. This is explained by 
the fact that in the Maclaurin series expansion of ~'0)(s, h*) in powers of sinh*, the coefficient of (sinh*) 2 
increases with increase in K*. 

The analogy between formulas (1.28) and (1.29) leads to the conclusion that the effects of the 
dimensionless parameters K* and p* on the accuracy of a solution are similar. Hence, the proposed method 
is most effective for a mechanical system in which the rigidity and thermal conductivity of the thin coating 
axe considerably smaller than the corresponding characteristics of the base. 

2. An  A x i s y m m e t r i c  C o n t a c t  P r o b l e m  Invo lv ing  Fr ic t iona l  Hea t  G e n e r a t i o n .  As an example, 
we consider the interaction of two bodies making contact over a circular area of radius a under the action of 
a pressing force P.  One body moves along the surface of the other at a constant velocity v. The moving body 
is inhomogeneous: it consists of a rigid heat-conducting base whose surface is coated with a thin elastic layer 
of thickness h. 

Friction leads to heat generation in the contact area by the law 

fop(p), p <~ 1, 
q(P)= o, p > l ,  

(2.1) 

where f is the friction coefficient, p is the contact pressure, and p = r/a. 
We assume that: 
(a) the tangential stresses acting on the contact area do not affect vertical displacements [2, 14]; 
(b) the immovable body is a rigid heat insulator, and, hence, the heat evolved in the contact area goes 

to heating of the moving body. 
The unknown pressure distribution p(p) is found from the contact condition 

tt~l ) p2 = 2~ A, p <~ 1 (2.2) 

(R >> a is the radius of curvature of the moving body and A is the approach of the bodies) and the equilibrium 
condition 

1 

2~a 2 ] pp(p) dp = P. (2.3) 
o 

Passing to the limit as/z* --* 0 and r --* 0, from relation (1.28) we obtain the elastic displacement of 
the surface of the moving body: 

h* p(p) + 2dial(1 + vl)h* T(1)(p,h.) ' P ~ O. (2.4) 
u l).p,(, ( h*)--  g l ( l + d x )  l + d l  

Using Eq. (1.29), for the contact temperature we obtain 

oo I o(1 ) o/ / 
T0)(p,h*) = ~2 ~ -  K* h*q(p) + f~2 Jo(sp) ds rq(r)go(rs)dr, p ~ O. (2.5) 

o o 

Substituting relations (2.1) and (2.5) into formula (2.4) and the result obtained into the boundary 
condition (2.2), we arrive (discarding terms of the order of h .2) at a Fredholm integral equation of the second 
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kind for the contact  pressure p(p): 

oo 1 

0 0 

Here/3" = 6xfvK*l'r and ~ = (1 - 2vl)/(2/~1). 

# , ( l h .  +d') (A_ap2)2R], O~<p~< 1. (2.6) 

In the case of a moving body with a slightly curved surface (R ~ 0), the contact  pressure must  satisfy 
the continuity condit ion p(1) = 0, from which we find 

oo 1 

#1(1 + d l )  /I1(1 + d l ) a  fJo( )ds (2.7) 
h* - /3"a f 2h*R 

0 0 

Substi tuting (2.7) into (2.6), we write 

oo 1 

p ( p ) =  #1(1  + d l ) a  (1-p )+/3*aJtJo(m-Jo(s)la J.p(.)Jo(.s)a., o<p< 1 (2.8) 
2h*R 

o o 

Since the integral equat ion (2.8) is similar in s t ruc ture  to the equation obtained in [5], it is concluded 
that  a critical value of the radius of the area of contact  is reached when P ---* oo or R --~ (x~. Using the 
procedure proposed in [5], we have act = 2.64//3* = 2.643,/(61fvK*). 

The solution of Eq. (2.8) is sought in the form 

p(p) _  l(1 + d l ) a  (1 - 
2h*R 

where the function p*(p) satisfies the equation 

oo 1 
p*(p) = 1 +/3*a [ J 0 ( s _ _ p ) . - - J 0 ( s ) d s f r p * ( r ) ( 1 - r 2 ) J o ( r s ) d r ,  0 ~< p ~< 1. (2.9) 

J 1 - p2 
0 0 

To construct  a numerical  algori thm for solving the integral equation (2.9), we divide the interval 
[0,1] into N regions by the points am = kiN (m = 0, 1 , . . . , N ) ,  assuming that  p*(p) = P~n = const for 
am-1 ~ p ~ am. After  integration,  we arrive at the following system of linear algebraic equations: 

N 
~_, bkmP* = 1, k = 1, 2, . . . ,N.  

r n = l  

Here 

bkrn = ~km - /3*a(1  - p~)-l[B(pk, am) - B(pk, am-1)]; 

B(p, a) = I 

a(1 - a2)F(l12,-1/2; 1; p2/a2) + (213)aZF(112,-3/2; 1; p2/a2) 

- (1/2)a2(1 - a2)F(1/2, 1/2; 2; a 2) - (1/4)a4F(1/2, 1/2; 3; a2), p < a, 

(1/2)a2(1 - a2)p-l F(1/2, 1/2; 2; a2 / p 2) + (1/ 4 )a4 p-l F(1/2, 1/2; 3; a2 / p 2) 

- (1/2)a2(1 - a2)F(1/2 ,  1/2; 2; a 2) - (1/4)a4F(1/2, 1/2; 3; a2), p > a; 

where p = (k - 1/2)/N (k = 1, 2,. . . ,  N), ~k,~ is the Kronecker symbol,  and F is the Gauss hypergeometric 
function [15]. 

Calculations show that  the ratio PH/P (PH is the force necessary for formation of a contact  area of 
radius a in the corresponding isothermal Hertz problem) depends linearly on the parameter /3*a:  

PH/P = 1 - /3"a /2 .64 .  

The distr ibution of the dimensionless contact stresses p(p)/p(O) for certain values of the parameter  ~*a 
is shown in Fig. 2. 
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Furthermore, we study the behavior of the solution of the problem for the case where the moving body 
has a flat base ( 1 / R  = 0). Then, the radius a of the contact area is fixed. Representing the solution of Eq. 
(2.6) in the form 

we obtain 

p(p) -'~ ~1(1 "1- d l )Ap*(p) /h* ,  (2.10) 

r162  1 

p'(p)= 0.<p.< 1. (2.11) 
0 0 

Substituting relation (2.10) into the statics condition (2.3), we find 

1 

A = ~ P'  = 2ra2~tl(1 + d , ) '  . = pp*(p)dp . (2.12) 
0 

From formulas (2.12) it follows that the quantity P1 is fixed and P* is determined by the solution p*(p) 
of Eq. (2.11) and, hence, depends on the parameter ~*a. 

The integral equation (2.11) is solved numerically using the foregoing algorithm. 
Investigations show that: 
(1) for 0 ~< ~*a < 1.12 we have P* >I 0, and P* ---* vr as ~*a --* 1.12. As a result, A > 0, and A ~ 0 

as ~*a ~ 1.12. Thus, for the given range of the parameter ~/*a, force strains dominate over thermal strains; 
(2) for ~*a > 1.12 we have A < 0, which indicates predominance of thermal strains over force strains. In 

addition, if ~*a > 2.64, separation of the edges of the elastic body from the surface of the half-space occurs. 
The unknown radius of the contact area is found from the relation ~*a = 2.64, and the contact-pressure 
distribution is found from the equation 

1 

2.64 [[Jo(sp)- J0(s)l ds [ rp(r)Jo(rs)dr (0 <<. p <<. 1) P(P) (2.13) 
0 0 

and the condition of equilibrium of the die (2.3). 
The Fredholm equation of the second kind (2.13) has a nontrivial solution, because the value 2.64 

coincides with the first characteristic number of this equation. 
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